Can we predict and prevent the onset of seizures?

Behnaam Aazhang J.S. Abercrombie Professor Electrical and Computer Engineering Rice University

Can we learn from data when it is not Gaussian nor linear?

Behnaam Aazhang J.S. Abercrombie Professor Electrical and Computer Engineering Rice University

Example

Can we predict and prevent the onset of seizures?

- less focus on the application
- more emphasize on tools
- let's step back with a few more fundamental questions

How can engineers contribute to medicine?

- from data to understanding various disorders
- developing therapies
 - patient-specific
 - episode-specific
 - scalability
 - cost

Engineers

- problem solving with constraints
- developing tools
 - sense and measure
 - nano-electronics
 - control modulation, stimulation, pacing
 - machine learning and data analytics
 - nonlinear and non-Gaussian

Example

pacemakers

Example

- pacemakers
- can we modulate our neurological circuit?
 - 86 billion neurons
 - 10 micron diameter
 - 100 Hz clock speed
 - 100 trillion synapses
 - complicated functionality with only 20 W of power

What am I excited about?

- can data analytics predict the onset?
- can we develop spatiotemporally precise modulation protocols to prevent the onset of seizures?

- unprovoked and recurring seizures
- seizure
 - no standard definition
 - abnormally hyper-excited neuronal activities

celebrities

- 1% of world's population
- causes: stroke, tumors, infection, genetic, developmental,...
- 1/3 of patients do not respond to medication
 - resection!!!!!
 - deep brain stimulation?

The challenge

Channel Index

30

0

20

3

ictal

Time (min)

h

9

The challenge

The challenge

Time (min)

A REAL PROPERTY AND ADDRESS OF

A HERRICH HER TO THE

Approach

- patient and episode specific
 - identify the seizure onset zone
 - understand the dynamics of the underlying system
 - predict seizures
 - modulate (stimulate) to prevent the onset of seizure

identify seizure onset zone

• identify seizure onset zone

• identify seizure onset zone

Causality

- one time series forecasting another
 - economics
 - transportation
 - ...
 - n. wiener (1956), c. granger (1969), h. marko (1973)
 - j. massey (1990), g. kramer (1998),
 - c. quinn, et. al. (2011)

A little background

• directed information and causality

$$I(X_1^N \to Y_1^N) = \sum_{n=1}^N I(X_1^n; Y_n | Y_1^{n-1})$$

• directional with temporal information

$$I(X_1^N \to Y_1^N) = \sum_{n=1}^N I(X_1^n; Y_n | Y_1^{n-1})$$

A little background

• mutual information of time series

$$I(X_1^N; Y_1^N) = \sum_{n=1}^N I(X_1^N; Y_n | Y_1^{n-1})$$

• no temporal and no causal information

 $I(X_1^N; Y_1^N) = H(Y_1^N) - H(Y_1^N | X_1^N)$

A little background

directed information of time series

$$I(X_1^N \to Y_1^N) = H(Y_1^N) - H(Y_1^N || X_1^N)$$

causal conditional entropy

• where

$$H(Y_1^N || X_1^N) = \sum_{n=1}^N H(Y_n | Y_1^{n-1}, X_1^n)$$

Back to seizures

- causal relation among electrodes
 - directed information
 - model free—data driven
 - k-nearest neighbor density estimation
- identify time series with largest directed information

- causal influence—directed connectivity
 - a graph with electrodes as nodes and directed information as edge
 - pre-ictal (period prior to seizure)

- causal influence—directed connectivity
 - a graph with electrodes as nodes and directed information as edge
 - pre-ictal (period prior to seizure)

- causal influence directed connectivity
 - a graph with electrodes as nodes and directed information as edge
 - pre-ictal, ictal, post-ictal

- causal influence—directed connectivity
 - a graph with electrodes as nodes and directed information as edge
 - pre-ictal (period prior to seizure)
 - net degree of a node = out degree in degree

- causal influence—directed connectivity
 - a graph with electrodes as nodes and directed information as edge
 - pre-ictal (period prior to seizure)
 - net degree of a node = out degree in degree

- causal influence—directed connectivity
 - a graph with electrodes as nodes and directed information as edge
 - pre-ictal (period prior to seizure)
 - net degree of a node = out degree in degree

- causal influence-directed connectivity •
 - a graph with electrodes as nodes and directed information as edge ٠
 - pre-ictal (period prior to seizure) ٠
 - net degree of a node = out degree in degree ٠

- causal influence directed connectivity
 - a graph with electrodes as nodes and directed information as edge
 - pre-ictal (period prior to seizure)
 - net degree of a node = out degree in degree

electrodes in seizure onset zone

nearly perfect match with the neurologist for all 12 patients

10

8

6

4

2

Net Outlfow

- focus on electrodes in the seizure onset zone -250 electrodes down to 6-10
- dynamics of time series to predict seizures

State space

trajectory is nonlinear

State space

- trajectory is nonlinear
- inter-ictal and pre-ictal

State space

- trajectory is nonlinear
- inter-ictal and pre-ictal periods are not distinguishable

2 seconds respresentation of interictal and preictal in the state space

Dynamics

• capturing dynamics of recordings

$$X_{m+1} = f(X_m)$$

• *K* recordings in time *m* are

$$X_m = \begin{bmatrix} x_m^{(1)} \\ x_m^{(2)} \\ \vdots \\ x_m^{(K)} \end{bmatrix}$$

• a linear approximation is often insufficient to capture the dynamics

$$X_{m+1} = AX_m$$
 where A is $K \times K$

Dynamics

time embedding

$$\mathcal{X}_{1} = \begin{bmatrix} X_{1} & X_{2} & \dots & X_{M-h+1} \\ X_{2} & X_{3} & \dots & X_{M-h+2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{h} & X_{h+1} & \dots & X_{M} \end{bmatrix}$$

• dynamics result in

$$\mathcal{X}_{2} = \begin{bmatrix} X_{2} & X_{3} & \dots & X_{M-h+2} \\ X_{3} & X_{4} & \dots & X_{M-h+3} \\ \vdots & \vdots & \ddots & \vdots \\ X_{h+1} & X_{h+2} & \dots & X_{M+1} \end{bmatrix} = f(\mathcal{X}_{1})$$

• a linear approximation has shown to be sufficient in many applications

$$\mathcal{X}_2 = \mathcal{A}\mathcal{X}_1$$
 where \mathcal{A} is $Kh \times Kh$

I. Mezic´"Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynamics

Example

Example

Dynamic mode decomposition

- the main objective is to estimate ${\cal A}$

$$\mathcal{A} = \mathcal{X}_2 \mathcal{X}_1^{-1} = \mathcal{X}_2 \mathcal{U} \mathcal{S}^{-1} \mathcal{W}^{\top}$$

- dynamics of the system is captured by eigenvector and eigenvalues of ${\cal A}$

$$\mathcal{A} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^{-1}$$

• the *Kh x Kh* matrix can be approximated by a smaller matrix

$$\tilde{\mathcal{A}} = \mathcal{W}_r^\top \mathcal{A} \mathcal{W}_r = \mathcal{W}_r^\top \mathcal{X}_2 \mathcal{U}_r \mathcal{S}_r^{-1}$$

Extracting key feature

spatiotemporal feature extraction

I. Mezic "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynamics

Features

• DMD phase correlations among electrodes and power versus frequencies

Back to seizure prediction

 \cdot dynamics $\mathcal{X}_{m+1} = \mathcal{A}_m \mathcal{X}_m$

DMD Power vs frequency in the interictal state

DMD Phase Correlation in the interictal state

DMD Power vs frequency in the preictal state

DMD Phase Correlation in the preictal state

L2 between consecutive DMD Phase correlation windows

L2 between consecutive DMD power windows

L2 between consecutive DMD power windows

EmDMD

Benchmark

Seizure prediction

- promising data analytic tools
 - directed information, mutual information in frequency (coherence)
 - coherence graphs, directed graphs, EmDMD, SVM
- patient specific
- real-time processing
 - non-Gaussian and nonlinear

Control

- spatiotemporally focused modulation
- data driven model of dynamics $\mathcal{X}_{m+1} = \mathcal{A}_m \mathcal{X}_m$
- control model

$$\mathcal{X}_{m+1} = \mathcal{A}_m \mathcal{X}_m + \mathcal{B}_m \mathcal{U}_m$$

Ultrasound and electromagnetic modulation

optimized beams

Take-home message

- learning from non-Gaussian and nonlinear data
 - control and modulation
 - non-invasive or minimally invasive

A happy and well funded team

Funding:

NIH

National Institutes of Health

THE ROBERT AND JANICE MCNAIR •••• FOUNDATION

The Dan L. Duncan Institute

CLINICAL AND TRANSLATIONAL RESEARCH

Bench to Bedside to Community

Projects

- optimization of MU-MIMO wireless network (su)
- non-invasive deep brain stimulation (ahsan, fan)
- wireless multisite modulation of the diseased heart (cosentino, banta)
- real-time closed-loop modulation for depression (erfanian)
- learning and socialization in primates (yellapantula)
- understanding olfactory circuit (jyoung)
- modulation of epileptic circuit (moghaddam)

